...
スタートフォーム 200KG

ブログ

>>

アルミニウム押出成形における押出比の制限?
更新日: 2025年12月20日
6分読了

アルミニウム押出成形における押出比の制限?

クリーンルーム用アルミ押出プロファイル
クリーンルーム用アルミ押出プロファイル

Aluminum extrusion often fails when the ratio is pushed too far. Profiles crack, tools break, and costs rise fast. Many buyers face this problem after drawings are already fixed.

The extrusion ratio of aluminum profiles is limited by metal flow stress, billet condition, die strength, alloy type, and press capability. When any one factor reaches its limit, stable extrusion is no longer possible.

Many engineers ask for higher ratios to save weight or reduce machining. That makes sense. But extrusion is not unlimited. Knowing the real limits helps avoid redesigns, delays, and quality risks.

What limits the extrusion ratio in aluminum profiles?

Aluminum extrusion ratio is the billet cross section divided by the final profile cross section. In theory, higher is better. In practice, several physical limits appear very early.

アルミ半丸押出
アルミ半丸押出

The first hard limit comes from metal flow stress. Aluminum must deform and pass through the die opening. As the ratio increases, resistance rises fast. The press must generate much higher force. Once required force exceeds press capacity, extrusion stops being possible.

The second limit is die strength. A high ratio means thin die openings and long bearing lengths. Stress inside the die increases. If stress exceeds die steel strength, cracks or breakage occur. Tool life drops sharply even before failure.

The third limit comes from temperature. Higher ratios create more friction and deformation heat. If metal temperature rises too much, surface tearing and hot shortness appear. If temperature drops too much, flow stops and pressure spikes.

Mechanical force limits

Extrusion force grows almost linearly with extrusion ratio for the same alloy and billet size. Press capacity therefore sets a hard ceiling.

ファクター Effect on extrusion ratio
プレストン数 Direct limit
ビレット径 Larger billets allow higher ratios
Container condition Worn containers reduce max ratio

If force is too high, press components fatigue faster. Long term damage often costs more than a redesign.

Die stress limits

Die stress does not scale gently. It rises sharply once openings become narrow.

  • Thin ribs increase stress
  • Long bearings increase stress
  • Asymmetric profiles increase stress

Once die stress is too high, failure is sudden. There is little warning.

Metal flow stability

High ratios increase flow imbalance. Some zones accelerate while others lag. This causes:

  • ねじれ
  • Bowing
  • Surface lines
  • 内部ボイド

Stable flow becomes harder as ratio increases.

Extrusion ratio is limited mainly by press force and die strength.

Higher extrusion ratios increase required force and internal die stress until equipment or tooling limits are reached.

Aluminum extrusion ratio has no real upper limit if speed is reduced enough.

Even at very low speed, press capacity, die strength, and metal flow physics impose hard limits.

How does alloy choice impact achievable ratio?

All aluminum alloys do not extrude the same way. Alloy choice often matters more than press size.

アルミニウム放出 7003 7075 のピラティス装置のアルミニウム プロフィール CNC の精密アルミニウム プロフィール
アルミニウム放出 7003 7075 のピラティス装置のアルミニウム プロフィール CNC の精密アルミニウム プロフィール

Soft alloys flow easily. Hard alloys resist deformation. This directly affects achievable extrusion ratio.

6xxx alloys are the most extrusion friendly. 6063 allows much higher ratios than 6061. 6082 allows lower ratios than both. 7xxx alloys are much more limited.

Flow stress differences by alloy

Each alloy has a different flow stress at extrusion temperature. Higher flow stress means more force and lower max ratio.

Alloy family Relative extrusion ratio capability
1xxx 非常に高い
3xxx 高い
5xxx ミディアム
6xxx High to medium
7xxx 低い

6063-T5 can often reach ratios above 80:1 under good conditions. 6061-T6 may struggle above 50:1. Some 7xxx alloys are limited to below 20:1.

Alloy chemistry effects

Small chemistry changes matter.

  • Higher magnesium increases strength but lowers flow
  • Silicon improves extrudability
  • Copper reduces extrudability

Recycled content can also raise impurity levels, which reduces flow consistency at high ratios.

熱処理による影響

Extrusion is done in a hot condition, but alloy response still matters.

  • Homogenized billets flow better
  • Poor homogenization increases pressure spikes
  • Uneven billet chemistry causes flow imbalance

Choosing the wrong alloy for a thin profile often forces ratio beyond safe limits.

6063 aluminum can usually reach higher extrusion ratios than 6061.

6063 has lower flow stress and better extrudability, allowing higher ratios under similar conditions.

All 6xxx alloys have nearly identical extrusion ratio limits.

Even within the same family, chemistry and strength differences cause large variation in achievable ratios.

Can thin-walled sections reach high extrusion ratios?

Thin walls are the most common reason extrusion ratios are pushed too high.

アルミニウム押出プレート
アルミニウム押出プレート

In many drawings, wall thickness is reduced to save weight. But thin walls increase extrusion ratio and die stress at the same time. This is a dangerous combination.

Wall thickness vs ratio

As wall thickness decreases, profile area shrinks. Ratio rises fast.

肉厚 Typical safe ratio range
Above 3.0 mm 30:1 to 60:1
2.0~3.0 mm 40:1 to 80:1
1.0 to 2.0 mm 50:1 to 100:1
Below 1.0 mm Highly risky

Thin walls below 1.2 mm often require special alloys, slow speeds, and short die life.

Flow balance challenges

Thin sections cool faster. Thick sections stay hot longer. This causes uneven flow.

  • Thin walls freeze early
  • Thick walls keep flowing
  • Profile distorts at exit

High ratio makes this worse because flow velocity differences grow.

Structural die limits

Very thin walls require very thin die tongues. These tongues bend or break under high load.

Even if extrusion is possible, scrap rate may be high.

Thin walls can reach high ratios only when:

  • Alloy is soft
  • Press is large
  • Speed is very slow
  • Die design is optimized

This increases cost sharply.

Thin-walled aluminum profiles can reach high extrusion ratios only under controlled conditions.

Thin walls increase die stress and flow imbalance, requiring optimized alloy, speed, and tooling.

Wall thickness has little effect on extrusion ratio limits.

Wall thickness directly affects profile area, die stress, and metal flow stability.

Which production parameters define max extrusion ratios?

Even with the right alloy and design, production parameters decide the final limit.

20mm X 20mmのアルミニウム放出
20mm X 20mmのアルミニウム放出

These parameters are often adjustable, but only within a narrow safe window.

ビレット温度

Billet temperature controls flow stress.

  • Too low: pressure spikes, die damage
  • Too high: surface tearing, grain growth

Higher ratios require higher billet temperature, but only up to a point.

Extrusion speed

Slower speed reduces pressure slightly and improves flow stability.

  • High ratio often needs slow speed
  • Too slow reduces productivity
  • Too fast causes surface defects

Speed adjustment cannot overcome press or die limits.

Lubrication and container condition

Friction adds load.

  • Worn containers increase friction
  • Poor lubrication raises pressure
  • Dirty billet surfaces increase resistance

Good maintenance can extend ratio limits by 5 to 10 percent.

Die design parameters

Die design is the biggest lever after alloy choice.

  • Bearing length controls flow
  • Pocket design balances velocity
  • Die steel quality affects strength

Poor die design can reduce achievable ratio by half.

パラメータ Effect on max ratio
ビレット温度 ミディアム
スピード ミディアム
金型設計 高い
メンテナンス ミディアム

Press stiffness and alignment

Older presses flex more under load. This causes uneven flow and die stress concentration. Modern presses handle high ratios better even at similar tonnage.

Die design has a larger impact on max extrusion ratio than extrusion speed.

Optimized die geometry improves flow and reduces stress far more than speed changes alone.

Increasing billet temperature can always increase extrusion ratio safely.

Too high temperature causes surface defects and material instability.

結論

Aluminum extrusion ratio is limited by physics, tooling, alloy, and process control. Pushing beyond these limits raises cost and risk. Understanding real boundaries early leads to better designs and stable production.

エヴァ

まだ答えが見つからない場合は、下のボタンをクリックして無料相談をご利用ください。
無料相談

最近の投稿

  • 1月 27, 2026

    アルミニウム押出材精密切断の要件

    大型アルミ押出材 アルミ押出材は最終工程で失敗することが多い。切削不良がタイトな...
    もっと読む >>
  • 1月 24, 2026

    温室フレーム用アルミ押出材?

    アルミ押出電気メッキシャワールームアルミプロファイル温室は、現代の農業でより重要になってきている。
    もっと読む >>
    アルミニウム押出電気メッキシャワールームアルミプロファイル
  • 1月 23, 2026

    ドロップシーリングのポイントは?

    キュービクルのあるモダンなオープン・オフィス・インテリア ドロップ・シーリングとは何か?
    もっと読む >>
    キュービクル、エルゴノミクスチェア、シーリングライトが特徴のモダンなオープンオフィス。部屋の隅には鉢植えが置かれ、明るい。.

メッセージを送る

Google reCaptcha: 無効なサイトキーです。