...
Startovní formulář 200KG

Blogy

>>

Hliníkové výlisky vhodné slitiny pro ohýbání?
Updated: Prosinec 31, 2025
6 minut čtení

Hliníkové výlisky vhodné slitiny pro ohýbání?

Trojúhelníkový hliníkový výlisek
Trojúhelníkový hliníkový výlisek

Many aluminum extrusions crack during bending. Others wrinkle or lose shape control. These problems waste material and time. Most failures come from choosing the wrong alloy or temper.

Aluminum extrusion alloys suitable for bending are those with balanced strength and ductility, allowing plastic deformation without cracking, such as specific 6xxx and 5xxx series alloys in appropriate tempers.

Bending is not just a forming step. It is a material behavior test. Understanding alloy limits before bending avoids costly redesign and scrap.

Which aluminum alloys offer the best bendability?

Poor bendability often surprises buyers. On paper, many alloys look similar. In practice, their bending behavior differs greatly.

Aluminum alloys with the best bendability are low to medium strength alloys with high ductility, especially 6xxx series like 6063 and 5xxx series like 5052.

Hliníkový výlisek 80 X 80
Hliníkový výlisek 80 X 80

Bendability depends on how much strain an alloy can absorb before cracking. This is closely linked to alloy chemistry and grain structure.

Why ductility matters more than strength

During bending, the outer radius stretches while the inner radius compresses. If the alloy cannot stretch enough, cracks form.

Alloys with high ductility allow:

  • Larger bend radii
  • Tighter bends
  • Fewer surface cracks

High strength alloys resist deformation. This resistance increases cracking risk.

Best performing alloy families

6xxx series alloys are the most common choice for bent extrusions.

Reasons include:

  • Balanced magnesium and silicon
  • Stable grain structure
  • Predictable response to forming

6063 is widely used for curved frames and architectural shapes. 6061 can also bend, but requires larger radii.

5xxx series alloys, such as 5052, offer even higher ductility. They bend very well but are less common in complex extrusions.

Bendability comparison by alloy

Slitina Relative Bendability Typical Bend Radius
6063 Velmi vysoká Tight
5052 Velmi vysoká Velmi těsné
6061 Střední Mírná
6005A Medium low Velké
7075 Velmi nízká Very large

This table shows a clear trend. As strength rises, bendability falls.

Practical alloy selection advice

For designs that require bending:

  • Choose the lowest strength alloy that meets load needs
  • Avoid copper-rich alloys
  • Specify bending early in design

From bending trials across many projects, alloy choice alone can reduce cracking risk by more than half.

6063 aluminum alloy offers excellent bendability for extrusion bending operations.Pravda

Its balanced chemistry provides high ductility and stable deformation behavior.

High strength aluminum alloys generally bend better than low strength alloys.False

Higher strength usually means lower ductility and higher cracking risk during bending.

How does temper affect bending performance?

Alloy selection is only half the decision. Temper often decides success or failure.

Aluminum temper strongly affects bending performance because harder tempers reduce ductility while softer tempers allow greater plastic deformation.

Hliníkové vytlačovací profily U Channel
Hliníkové vytlačovací profily U Channel

Temper describes the thermal and mechanical history of aluminum. It controls strength, hardness, and ductility.

Common tempers used in bending

Extruded aluminum is often supplied in these tempers:

  • T4: ošetřeno roztokem a přirozeně stárnuté
  • T5: cooled from extrusion and artificially aged
  • T6: ošetřeno roztokem a uměle stárnuto

Each behaves differently during bending.

Softer tempers bend better

T4 temper offers the best bendability. It allows aluminum grains to slip and stretch.

Benefits of T4 for bending:

  • Lower yield strength
  • Higher elongation
  • Reduced cracking risk

T5 and T6 tempers are stronger but less forgiving.

Tradeoff between strength and formability

Using a soft temper improves bending but reduces final strength. Many projects solve this by bending first, then aging.

Typical approach:

  1. Extrude in T4
  2. Perform bending
  3. Heat treat to T6

This sequence improves both formability and final performance.

Temper influence comparison

Temperament Úroveň síly Ohybatelnost
T4 Nízká Vynikající
T5 Střední Mírná
T6 Vysoká Špatný

Ignoring temper often leads to unexpected cracking even with the right alloy.

From production experience, switching from T6 to T4 before bending solves many failure cases without changing alloy.

Softer aluminum tempers such as T4 improve bending performance.Pravda

Lower hardness allows greater plastic deformation without cracking.

T6 temper aluminum bends more easily than T4 due to higher strength.False

Higher strength reduces ductility and increases cracking risk.

Can thick-walled extrusions be bent cleanly?

Thickness adds another layer of difficulty. Many assume thick walls cannot bend well. This is not always true.

Thick-walled aluminum extrusions can be bent cleanly if alloy, temper, bend radius, and tooling are properly controlled.

Půlkulaté hliníkové výlisky
Půlkulaté hliníkové výlisky

Wall thickness affects strain distribution during bending. The thicker the wall, the higher the stress difference between inner and outer surfaces.

Challenges with thick sections

Common problems include:

  • Outer radius cracking
  • Inner radius wrinkling
  • Cross-section distortion

These issues increase with thickness and tight bend radii.

Key factors that enable clean bending

Clean bending of thick extrusions requires:

  • Large enough bend radius
  • Soft temper before bending
  • Internal support tooling
  • Controlled bending speed

Mandrels or fillers can support hollow sections.

Bend radius rules for thick walls

A simple guideline is to increase bend radius as wall thickness increases.

Typical rule of thumb:

  • Thin wall: radius equals 1 to 2 times wall thickness
  • Thick wall: radius equals 3 to 5 times wall thickness

These are starting points, not guarantees.

Thick-wall bending performance factors

Faktor Effect on Bending
Tloušťka stěny Higher stress
Bend radius Controls strain
Temperament Controls ductility
Nástroje Controls shape

Thick-walled parts often succeed when bent in multiple stages rather than one pass.

From shop trials, most thick extrusion bending failures come from trying to use thin-wall rules.

Thick-walled aluminum extrusions can be bent successfully with proper process control.Pravda

Radius, temper, and tooling adjustments reduce cracking and distortion.

Thick-walled aluminum extrusions cannot be bent without cracking.False

Cracking is avoidable with correct alloy and bending parameters.

Are certain alloys prone to cracking during bending?

Yes. Some alloys crack easily, even under mild bending. This risk must be understood early.

Certain aluminum alloys are prone to cracking during bending due to low ductility, coarse grain structure, or high levels of alloying elements like copper and zinc.

Hliníkový výlisek Lineární LED osvětlení Hliníkový profil
Hliníkový výlisek Lineární LED osvětlení Hliníkový profil

Cracking is a symptom of limited strain capacity. Alloy chemistry plays the main role.

High risk alloy groups

Alloys with higher cracking risk include:

  • 2xxx series alloys
  • 7xxx series alloys
  • Over-aged 6xxx alloys

These alloys prioritize strength over formability.

Why copper and zinc increase cracking

Copper and zinc strengthen aluminum but reduce slip between grains. During bending, stress concentrates at grain boundaries.

To vede k:

  • Microcrack initiation
  • Crack propagation along bend line
  • Sudden fracture

Surface cracks may appear small but often grow during service.

Grain structure influence

Coarse grains worsen bending performance. They reduce uniform deformation.

Grain size is influenced by:

  • Extrusion temperature
  • Rychlost chlazení
  • Složení slitiny

Poor process control increases cracking risk even in normally bendable alloys.

Crack risk comparison

Slitina Cracking Risk Ohybatelnost
6063 Nízká Vysoká
6061 Střední Střední
6005A Středně vysoká Nízká
2024 Vysoká Velmi nízká
7075 Velmi vysoká Extremely low

Designers should avoid high risk alloys when bending is required. If unavoidable, larger radii and softer tempers are mandatory.

From failure analysis, alloy cracking during bending is rarely random. It is predictable and preventable.

Copper and zinc rich aluminum alloys are more prone to cracking during bending.Pravda

These elements reduce ductility and increase stress concentration.

All aluminum alloys have similar cracking risk during bending.False

Cracking risk varies widely based on alloy chemistry and temper.

Závěr

Successful aluminum extrusion bending depends on alloy ductility, temper choice, wall thickness control, and crack risk awareness. Selecting bend-friendly alloys and soft tempers early prevents failures and ensures clean, repeatable bending results.

Eva

Stále nenacházíte odpověď? klikněte na tlačítko níže pro další bezplatnou konzultaci, Eva je zde, aby vám pomohla.
Získejte bezplatnou konzultaci

Nedávný příspěvek

  • Leden 9, 2026

    Aluminum extrusion minimum radius design rules?

    Aluminum Extrusion Aluminum Edge Trim For Truck Body Cabins Profiles Aluminum profiles often fail late…
    Přečtěte si více >>
    Hliníkový výlisek Hliníkové hrany pro kabiny karoserií nákladních automobilů Profily
  • Leden 8, 2026

    Preferovaná slitina hliníku pro CNC frézování?

    Průmysl vytlačování hliníku Hliníkové díly selhávají při špatném frézování. Třísky se přilepí, nástroje se rychle opotřebovávají,...
    Přečtěte si více >>
    Hliníkový vytlačovací průmysl
  • 6. ledna 2026

    7 klíčových faktorů, které je třeba zvážit při nákupu průmyslových chladičů od zahraničních dodavatelů

    Když spolupracujeme s týmy zodpovědnými za nákup průmyslových chladičů v zahraničí, vidíme totéž...
    Přečtěte si více >>
    bílá keramická moderní váza

Pošlete nám zprávu

Google reCAPTCHA: Neplatný klíč webu.